11,616 research outputs found

    Relationship between ferroelectricity and Dzyaloshinskii-Moriya interaction in multiferroics and the effect of bond-bending

    Full text link
    We studied the microscopic mechanism of multiferroics, in particular with the "spin current" model (Hosho Katsura, Naoto Nagaosa and Aleander V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005)). Starting from a system with helical spin configuration, we solved for the forms of the electron wave functions and analyzed their characteristics. The relation between ferroelectricity and Dzyaloshinskii-Moriya interaction (I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958) and T. Moriya, Phys. Rev. 120, 91 (1960)) is clearly established. There is also a simple relation between the electric polarization and the wave vector of magnetic orders. Finally, we show that the bond-bending exists in transition metal oxides can enhance ferroelectricity.Comment: 14 pages, 3 figures. acceptby Physical Review

    Micellar Crystals in Solution from Molecular Dynamics Simulations

    Full text link
    Polymers with both soluble and insoluble blocks typically self-assemble into micelles, aggregates of a finite number of polymers where the soluble blocks shield the insoluble ones from contact with the solvent. Upon increasing concentration, these micelles often form gels that exhibit crystalline order in many systems. In this paper, we present a study of both the dynamics and the equilibrium properties of micellar crystals of triblock polymers using molecular dynamics simulations. Our results show that equilibration of single micelle degrees of freedom and crystal formation occurs by polymer transfer between micelles, a process that is described by transition state theory. Near the disorder (or melting) transition, bcc lattices are favored for all triblocks studied. Lattices with fcc ordering are also found, but only at lower kinetic temperatures and for triblocks with short hydrophilic blocks. Our results lead to a number of theoretical considerations and suggest a range of implications to experimental systems with a particular emphasis on Pluronic polymers.Comment: 12 pages, 11 figures. Note that some figures are extremely low quality to meet arXiv's file size limit

    Modelling a Bistable System Strongly Coupled to a Debye Bath: A Quasiclassical Approach Based on the Generalised Langevin Equation

    Get PDF
    Bistable systems present two degenerate metastable configurations separated by an energy barrier. Thermal or quantum fluctuations can promote the transition between the configurations at a rate which depends on the dynamical properties of the local environment (i.e., a thermal bath). In the case of classical systems, strong system-bath interaction has been successfully modelled by the Generalised Langevin Equation (GLE) formalism. Here we show that the efficient GLE algorithm introduced in Phys. Rev. B 89, 134303 (2014) can be extended to include some crucial aspects of the quantum fluctuations. In particular, the expected isotopic effect is observed along with the convergence of the quantum and classical transition rates in the strong coupling limit. Saturation of the transition rates at low temperature is also retrieved, in qualitative, yet not quantitative, agreement with the analytic predictions. The discrepancies in the tunnelling regime are due to an incorrect sampling close to the barrier top. The domain of applicability of the quasiclassical GLE is also discussed.Comment: 21 pages, 5 figures. Presented at the NESC16 conference: Advances in theory and simulation of non-equilibrium system

    Applications of the Generalised Langevin Equation: towards a realistic description of the baths

    Get PDF
    The Generalised Langevin Equation (GLE) method, as developed in Ref. [Phys. Rev. B 89, 134303 (2014)], is used to calculate the dissipative dynamics of systems described at the atomic level. The GLE scheme goes beyond the commonly used bilinear coupling between the central system and the bath, and permits us to have a realistic description of both the dissipative central system and its surrounding bath. We show how to obtain the vibrational properties of a realistic bath and how to convey such properties into an extended Langevin dynamics by the use of the mapping of the bath vibrational properties onto a set of auxiliary variables. Our calculations for a model of a Lennard-Jones solid show that our GLE scheme provides a stable dynamics, with the dissipative/relaxation processes properly described. The total kinetic energy of the central system always thermalises toward the expected bath temperature, with appropriate fluctuation around the mean value. More importantly, we obtain a velocity distribution for the individual atoms in the central system which follows the expected canonical distribution at the corresponding temperature. This confirms that both our GLE scheme and our mapping procedure onto an extended Langevin dynamics provide the correct thermostat. We also examined the velocity autocorrelation functions and compare our results with more conventional Langevin dynamics.Comment: accepted for publication in PR

    Effects of boundary conditions on the critical spanning probability

    Full text link
    The fractions of samples spanning a lattice at its percolation threshold are found by computer simulation of random site-percolation in two- and three-dimensional hypercubic lattices using different boundary conditions. As a byproduct we find pc=0.311605(5)p_c = 0.311605(5) in the cubic lattice.Comment: 8 pages Latex, To appear in Int. J. Mod. Phys.

    Nonequilibrium processes from Generalised Langevin Equations: realistic nanoscale systems connected to two thermal baths

    Get PDF
    We extend the Generalised Langevin Equation (GLE) method [Phys. Rev. B 89, 134303 (2014)] to model a central classical region connected to two realistic thermal baths at two different temperatures. In such nonequilibrium conditions a heat flow is established, via the central system, in between the two baths. The GLE-2B (GLE two baths) scheme permits us to have a realistic description of both the dissipative central system and its surrounding baths. Following the original GLE approach, the extended Langevin dynamics scheme is modified to take into account two sets of auxiliary degrees of freedom corresponding to the mapping of the vibrational properties of each bath. These auxiliary variables are then used to solve the non-Markovian dissipative dynamics of the central region. The resulting algorithm is used to study a model of a short Al nanowire connected to two baths. The results of the simulations using the GLE-2B approach are compared to the results of other simulations that were carried out using standard thermostatting approaches (based on Markovian Langevin and Nose-Hoover thermostats). We concentrate on the steady state regime and study the establishment of a local temperature profile within the system. The conditions for obtaining a flat profile or a temperature gradient are examined in detail, in agreement with earlier studies. The results show that the GLE-2B approach is able to treat, within a single scheme, two widely different thermal transport regimes, i.e. ballistic systems, with no temperature gradient, and diffusive systems with a temperature gradient.Comment: present version accepted for publication in Phys. Rev. B (Apr 2016

    Power law tails of time correlations in a mesoscopic fluid model

    Get PDF
    In a quenched mesoscopic fluid, modelling transport processes at high densities, we perform computer simulations of the single particle energy autocorrelation function C_e(t), which is essentially a return probability. This is done to test the predictions for power law tails, obtained from mode coupling theory. We study both off and on-lattice systems in one- and two-dimensions. The predicted long time tail ~ t^{-d/2} is in excellent agreement with the results of computer simulations. We also account for finite size effects, such that smaller systems are fully covered by the present theory as well.Comment: 11 pages, 12 figure
    • …
    corecore